
Capstone Project Spring 2023

Justice Howley

Jason Weeks

Ian Yelle

Program Analysis 

and Compilers



INTRODUCTION

• Studying Quasi-Invariance

• Researching LLVM and Compilers

• Finding Code Examples and Checking Examples for QI

• Creating a Benchmark and Benchmarking Examples



QUASI-INVARIANCE

• What is Quasi-Invariance?

– Why does it matter?

• How to remove it?

– Loop Invariant Code Movement (LICM) for 

invariance of 1

– Invariance > 1? Loop Quasi Invariant Code 

Movement (LQICM)



QUASI-INVARIANCE

• Peeling: Executing the body of a loop once (before the 

loop itself)

• Hoisting: Removing invariant code out of loops

• Idea to peel loop and hoist 

invariants until loop has no 

invariance/QI

Fig. 1: Example of LQICM in action



EXAMPLES

• Found code examples in source code and GitHub 
Repositories

• Created our own examples based on the examples we 
find

• We determined if the examples had quasi-
invariance given the following criteria:

– Loops that has conditionals and reassignments

– Loops within loops, especially those with 
above criteria



EXAMPLES

Fig. 2: VDGExample.c before peeling Fig. 3: VDGExample.c after peeling



DEPENDENCY GRAPHS

• With examples, we used the dependency graphs 

outlined within the paper to detect QI

• This technique was good

for manual removal of QI,

but had problems being

automated

Fig. 4: Dependency Graph from Paper



LLVM

• Worked with LLVM to get familiar with its passes like 

LICM

• We want to eventually implement an LLVM pass 

that implements LQICM.

• We tried using the LLVM dependency graph tool 

to determine QI in our examples, but it proved harder 

than mapping the dependencies ourselves.



BENCHMARKING

• Learning how to benchmark software

• Optimizations

• Ease-of-Use changes

• On GitHub (https://github.com/jweeks2023/LQICM-

Benchmark)

https://github.com/jweeks2023/LQICM-Benchmark
https://github.com/jweeks2023/LQICM-Benchmark


RESULTS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

O 0 O 1 O 2 O 0 O 1 O 2

C A P _ E X_ 0 5 . C C A P _ E X_ 5 _ P E E L E D . C

A
V

G
R

U
N

T
IM

E
 (

S
E

C
)

CAP_EX_05.C RESULTS

0

0.05

0.1

0.15

0.2

0.25

O 0 O 1 O 2 O 0 O 1 O 2

C A P _ E X_ 6 . C C A P _ E X_ 6 _ P E E L E D . C

A
V

G
R

U
N

T
IM

E
 (

S
E

C
)

CAP_EX_6.C RESULTS



RESULTS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O 0 O 1 O 2 O 0 O 1 O 2

F A C T 4 . C F A C T 4 _ P E E L E D . C

A
V

G
R

U
N

T
IM

E
 (

S
E

C
)

FACT4.C RESULTS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

O 0 O 1 O 2 O 0 O 1 O 2

L O O P 2 . C L O O P 2 _ P E E L E D . C

A
V

G
R

U
N

T
IM

E
 (

S
E

C
)

LOOP2.C RESULTS



RESULTS

0

0.05

0.1

0.15

0.2

0.25

O 0 O 1 O 2 O 0 O 1 O 2

T E S T 1 . C T E S T 1 _ P E E L ED . C

A
V

G
R

U
N

T
IM

E
 (

S
E

C
)

TEST1.C RESULTS

0

0.05

0.1

0.15

0.2

0.25

0.3

O 0 O 1 O 2 O 0 O 1 O 2

V D G E XA MP L E _ 1 . C V D G E XA MP L E _ P E E L E D . C

A
V

G
R

U
N

T
IM

E
 (

S
E

C
)

VDGEXAMPLE.C RESULTS



ANALYSIS

• With no compiler optimization, LQICM shows 

significant runtime improvements 

• Added compiler optimization along with LQICM reduce 

the amount of runtime improvements

• Further testing needed with more examples to fully 

gauge efficacy 



CHALLENGES

• Finding code examples

• LLVM installation/use

• Slight miscommunication with client

• Trying to use pre-made benchmarking software

• Benchmark influenced by hardware



MOVING FORWARD

• Summer Scholars Program

– Research more in LLVM and LLVM passes

– Develop an LLVM pass that handles LQICM

• Benchmark

– Maintain normal benchmark as open-source C 

benchmark

– Possibly fork this to automatically measure C code 

before and after going through LQICM pass



CONCLUSION

• Thank you!

• Questions?


	Slide 1: Program Analysis and Compilers
	Slide 2: INTRODUCTION
	Slide 3: QUASI-INVARIANCE
	Slide 4: QUASI-INVARIANCE
	Slide 5: EXAMPLES
	Slide 6: EXAMPLES
	Slide 7: DEPENDENCY GRAPHS
	Slide 8: LLVM
	Slide 9: BENCHMARKING
	Slide 10: RESULTS
	Slide 11: RESULTS
	Slide 12: RESULTS
	Slide 13: ANALYSIS
	Slide 14: CHALLENGES
	Slide 15: MOVING FORWARD
	Slide 16: CONCLUSION

